
INL/EXT-16-38310 
 

Light Water Reactor Sustainability Program 
 
 
 

Grizzly Usage and Theory Manual 
 
 
 

B. W. Spencer 
M. Backman 

P. Chakraborty 
D. Schwen 
Y. Zhang 
H. Huang 

X. Bai 
W. Jiang                  

 

 

 

 
 

 

March 2016 

DOE Office of Nuclear Energy 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

DISCLAIMER 

This information was prepared as an account of work 
sponsored by an agency of the U.S. Government. Neither the U.S. 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, expressed or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness, of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial 
product, process, or service by trade name, trade mark, 
manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the U.S. 
Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of 
the U.S. Government or any agency thereof. 



 

 

INL/EXT-16-38310
 

Light Water Reactor Sustainability Program 
 

 Grizzly Usage and Theory Manual 

B. W. Spencer – INL 
M. Backman – University of Tennesse, Knoxville 

P. Chakraborty – INL 
D. Schwen – INL 
Y. Zhang – INL 
H. Huang – INL 

X. Bai – INL 
W. Jiang – INL 

 

 
March 2016 

 
Idaho National Laboratory 
Idaho Falls, Idaho 83415  

 
http://www.inl.gov/lwrs 

Prepared for the 
U.S. Department of Energy 
Office of Nuclear Energy 

Under DOE Idaho Operations Office 
Contract DE-AC07-05ID14517 



 

 

 



Acknowledgments

Development of Grizzly is funded by the Risk-Informed Safety Margins Characterization (RISMC) pathway

of the Department of Energy’s Light Water Reactor Sustainability (LWRS) program.

Grizzly includes contributions made by the University of Tennessee, Knoxville (UTK). The support of

Professors Brian Wirth and Robert Dodds at UTK in this effort is gratefully acknowledged.

Much of the general capability for thermomechanical analysis that Grizzly is based on was originally

developed for the BISON nuclear fuel performance modeling code. Likewise, much of the documentation

of these general capabilities provided in this manual was derived from the BISON User’s Manual.

ii



Contents

1 Introduction 1
1.1 The role of Grizzly in multiscale modeling of RPVs . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Software Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Running Grizzly 4
2.1 Checking Out the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Internal Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 External Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Updating Grizzly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Executing Grizzly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Input to Grizzly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.2 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.3 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Input File Structure 8
3.1 Basic Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Summary of MOOSE Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Grizzly Syntax Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Common Commands For All Physics 10
4.1 GlobalParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Executioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5 Timestepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5.1 ConstantDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5.2 FunctionDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5.3 IterationAdaptiveDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.6 PETSc Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.7 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.8 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.9 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.9.1 TimeDerivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.9.2 BodyForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.10 AuxVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.11 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.12 Postprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.12.1 ElementalVariableValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.12.2 NodalVariableValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.12.3 NumNonlinearIterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.12.4 PlotFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.12.5 SideAverageValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



4.12.6 SideFluxIntegral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.12.7 TimestepSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.13 VectorPostprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.13.1 LineValueSampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.14 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.14.1 Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.14.2 ParsedFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.14.3 PiecewiseBilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.14.4 PiecewiseConstant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.14.5 PiecewiseLinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.15 BCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.15.1 DirichletBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.15.2 PresetBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.15.3 FunctionDirichletBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.15.4 FunctionPresetBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.16 AuxKernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.16.1 MaterialRealAux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.17 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.17.1 EqualValueBoundaryConstraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.18 UserObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.19 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.19.1 Basic Input File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.19.2 Advanced Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.19.3 Common Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.19.4 File Output Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.20 Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.20.1 MaxIncrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Thermal Governing Equations and Associated Commands 31
5.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 Heat Conduction Time Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.3 Heat Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 HeatConductionMaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 BCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.1 ConvectiveFluxFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Mechanical Governing Equation, Kinematics, and Associated Commands 34
6.1 Temperature-dependent thermal expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 SolidMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.2 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 AuxKernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3.1 MaterialTensorAux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Elastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



6.6 VectorPostprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6.1 LineMaterialSymmTensorSampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 BCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.7.1 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Submodeling 41
7.1 UserObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1.1 SolutionUserObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2.1 SolutionFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Axisymmetric2D3DSolutionFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Theory and Commands for Reactor Pressure Vessel Analysis 44
8.1 Fluence Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.2 EONY Embrittlement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.3 Fracture Toughness From Master Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.4 Fracture Domain Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.4.1 𝐽 -integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.4.2 Interaction integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.4.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Demonstration RPV Analysis 54
9.1 Global RPV Model (2D Axisymmetric) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2 Global RPV Model (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.3 Local Fracture Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10 References 57

v



List of Figures

1 Map for models being developed for RPV embrittlement modeling with Grizzly . . . . . . . 2

2 Criteria used to determine adaptive timestep size . . . . . . . . . . . . . . . . . . . . . . . 14

3 Instantaneous and mean coefficients of thermal expansion . . . . . . . . . . . . . . . . . . . 35

4 Attenuation through the thickness of the wall computed using FluenceFunction and a map

of the fluence on the inner surface of the RPV. . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Mesh used for 2D axisymmetric strip RPV model. . . . . . . . . . . . . . . . . . . . . . . . 54

6 Mesh used for 3D RPV model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Mesh used for local fracture model of axial surface-breaking flaw. . . . . . . . . . . . . . . 56

vi



1 Introduction

Grizzly is a multiphysics simulation code for characterizing the behavior of nuclear power plant (NPP) struc-

tures, systems and components (SSCs) subjected to a variety of age-related degradation mechanisms. Grizzly

simulates both the progression of aging processes, as well as the capacity of aged components to safely per-

form.

This initial beta release of Grizzly includes capabilities for engineering-scale thermo-mechanical anal-

ysis of reactor pressure vessels (RPVs). Grizzly will ultimately include capabilities for a wide range of

components and materials. Grizzly is in a state of constant development, and future releases will broaden

the capabilities of this code for RPV analysis, as well as expand it to address degradation in other critical

NPP components.

1.1 The role of Grizzly in multiscale modeling of RPVs

RPVs are put into service with large populations of flaws introduced in the manufacturing process. During

normal or abnormal conditions, transients in the temperature and pressure of the coolant can induce elevated

stresses, which results in stress concentrations at the tips of these pre-existing flaws. To determine whether

these stress concentrations are below the threshold to initiate fractures at those flaws requires a detailed

engineering analysis. As the RPV steel is exposed to irradiation and elevated temperature, the microstructure

evolves and the steel becomes more brittle, making it more susceptible to fracture initiation and growth from

flaws. This increased susceptibility to fracture is an important consideration when contemplating long term

operation beyond 60 years.

A number of embrittlement trend curves have been developed to represent the effect of long-term en-

vironmental exposure and are currently employed in practice in engineering fracture assessments of RPVs.

These are based on data extending to the lifetime of the current reactor fleet, and hence can not be confidently

extrapolated to applications beyond 60 years of service. For more confidence in predictions of material be-

havior under long term operation, a science-based, bottom-up capability to simulate phenomena leading to

embrittlement at lower length scales is necessary. This will permit evaluation of behavior outside the range

of applicability of the physically motivated, empirically calibrated models currently used for that purpose.

The goal of the development effort for RPVs in Grizzly is to provide capabilities for both engineering-

scale fracture mechanics and for modeling microstructure evolution, to provide a predictive simulation tool

that can improve the confidence in predictions of the fracture response of very general flaw configurations,

including the effects of microstructure evolution on the material’s resistance to fracture after long-term ex-

posure to irradiation and high temperatures.

Because of the multiple scales and physical phenomena involved, multiple modeling techniques are being

developed for RPVs in Grizzly. A map of the methods employed is shown in Figure 1, demonstrating how the

microstructure evolution and engineering scale models will be used together in a probabilistic risk assessment

framework to compute a probability of failure of the RPV under off-normal conditions, accounting for the

effects of age-related material degradation.

At the engineering scale, Grizzly first computes the thermo-mechanical response (stress, temperature) of

RPVs under pressurized thermal shock scenarios. Local fracture submodels then use these results to compute

the stress intensity at pre-existing flaws and determine whether fracture propagation will occur. These flaw

region fracture models are used in a probabilistic simulation, which is difficult to do directly using the models

because of the high computational costs involved. Reduced order models will be developed using these

detailed fracture models to efficiently evaluate their response within a probabilistic model using the RAVEN

code. Within the probabilistic evaluation, an embrittlement trend curve is employed to represent the effect

of exposure to high neutron flux and temperature on the toughness of the material.

The RPV modeling roadmap shows two parallel paths to model the two dominant mechanisms leading

1



Figure 1: Map for models being developed for RPV embrittlement modeling with Grizzly

to RPV steel embrittlement: irradiation damage and solute precipitation. These mechanisms both lead to

material hardening and embrittlement, which will be quantified using other models. The methods involved

span multiple length and time scales, including molecular dynamics, lattice kinetic Monte Carlo (LKMC),

rate theory (of which cluster dynamics is a subset), crystal plasticity and fracture mechanics. Some of these

models (e.g. atomistic models) by necessity are developed using other codes, but they are being developed

in Grizzly wherever applicable. These are still under development, but will be included in future releases as

they are completed.

1.2 Software Environment

Grizzly is based on the MOOSE multiphysics simulation platform developed at Idaho National Laboratory

(INL). MOOSE provides a general platform for solving a variety of physics problems, including LWR com-

ponent aging problems. MOOSE provides capabilities for solving a general set of coupled partial differential

equations using the finite element method. This includes support for equation solvers, file input/output, in-

frastructure for communication between processors in a parallel high performance computing environment,

finite element data structures and functions, and a modular architecture that permits incorporation of physics

models within an application derived on MOOSE, such as Grizzly.

Because of the highly modular nature of the MOOSE framework, it is easy to compose together physics

modules from a variety of sources. MOOSE is distributed with both the core framework, as well as a basic

set of physics modules, which provide capabilities for physics shared by multiple end applications.

Many of the capabilities of Grizzly are provided by the solid_mechanics and heat_conduction mod-

2



ules in the MOOSE code base. From the user’s perspective, the method for incorporating a set of physics

modules in an analysis is independent of where the source code for those modules exists. This document

covers the usage of the set of capabilities needed to apply Grizzly to LWR aging problems of interest. Those

capabilities that are general-purpose are implemented in MOOSE modules, while Grizzly is a repository for

capabilities specific to LWR aging problems.

1.3 Document Organization

This document includes the following sections:

• Section 2 documents the procedures for obtaining and compiling the Grizzly source code, and for

running Grizzly.

• Section 3 provides a summary of the structure of the Grizzly input file.

• Section 4 summarizes the input file syntax for features common to all types of physics models in

MOOSE-based codes.

• Section 5 summarizes the governing equations and associated commands for thermal analysis.

• Section 6 summarizes the governing equation, kinematics, and associated commands for mechanical

analysis.

• Section 7 summarizes the procedure and commands used for submodeling.

• Section 8 summarizes the input file syntax for reactor pressure vessel fracture analysis beyond what

is covered in previous sections, with accompanying discussion of the theory behind the code features

used.

• Section 9 shows full input files for global thermo-mechanical RPV analyses and fracture analyses of

local flaws, with commentary on the features and options used.

3



2 Running Grizzly

2.1 Checking Out the Code

Grizzly is hosted on an internal GitLab server in INL’s High Performance Computing enclave. The instruc-

tions for checking out the code are different depending upon whether you are an internal (INL onsite user)

or external user. These instructions are only for checking out and running the code. If you plan to contribute

to Grizzly, detailed instructions for contributing can be found on the idaholab/grizzly wiki page on GitLab.

2.1.1 Internal Users

The first step is to obtain an INL High Performance Computing (HPC) account. Once HPC access has been

granted go to the GitLab website (https://hpcgitlab.inl.gov/) and login with your HPC username and password

on the LDAP tab.

Once logged in and access has been granted to the idaholab/grizzly repository the following steps are

required for the initial checkout of the code:

First add an SSH key to your GitLab profile. To do so execute the code below in a terminal.

ssh-keygen -t rsa -C "your_email"

cat ~/.ssh/id_rsa.pub

Then copy-paste the key to the ’My SSH Keys’ section under the ’SSH’ tab in your user profile on GitLab.

Next clone the Grizzly GitLab repository.

cd ~/projects/

git clone git@hpcgitlab.inl.gov:idaholab/grizzly.git

Next initialize the MOOSE submodule:

cd ~/projects/grizzly/

git submodule update --init

It is necessary to build libMesh before building any application:

cd ~/projects/grizzly/moose/scripts

./update_and_rebuild_libmesh.sh

Once libMesh has compiled successfully, you may now compile Grizzly:

cd ~/projects/grizzly/

make (add -jn to run on multiple "n" processors)

Once Grizzly has compiled successfully, it is recommended to run the tests to make sure the version of

the code you have is running correctly.

cd ~/projects/grizzly/

./run_test (add -jn to run "n" jobs at one time)

4



2.1.2 External Users

For external users there are a few additional steps to checking out the code. First request an HPC account.

This can be requested at the HPC registration page (https://secure.inl.gov/caims/). Once an HPC account

has been generated an ssh tunnel will need to be set up to access GitLab. Add the following lines to your

~/.ssh/config file. Replace <USERNAME> with the username for your HPC account.

#Multiplex connections for less RSA typing

Host *

ControlMaster auto

ControlPath ~/.ssh/master-%r@%h:%p

# General Purpose HPC Machines

Host eos hpcsc flogin1 flogin2 quark

User <USERNAME>

ProxyCommand ssh <USERNAME>@hpclogin.inl.gov netcat %h %p

#GitLab

Host hpcgitlab.inl.gov

User <USERNAME>

ProxyCommand nc -x localhost:5555 %h %p

#Forward license servers, webpages, and source control

Host hpclogin hpclogin.inl.gov

User <USERNAME>

HostName hpclogin.inl.gov

LocalForward 8080 hpcweb:80

LocalForward 4443 hpcsc:443

Next create a tunnel into the HPC environment and leave it running while you require access to GitLab.

If you close this window, you close the connection:

ssh -D 5555 username@hpclogin.inl.gov

Then you have to adjust your socks proxy settings for your web browser to reflect the following settings

hostname: localhost

port: 5555

If you do not know how to do that, look up Change socks proxy settings for <insert the name of your
web browser here> on google.com or some other search engine. Once that is complete you can login to the

GitLab website. The rest of the steps for checking out the code are the same as for internal users.

2.2 Updating Grizzly

If it has been some time since you have checked out the code an update will be required to gain access to the

new features within Grizzly. The following instructions apply to both internal and external users to update

the code. Note that external users must have their ssh tunnel set up prior to proceeding. First update Grizzly:

cd ~/projects/grizzly/

git pull

5



Then update the MOOSE submodule:

cd ~/projects/grizzly/

git submodule update

Next rebuild libMesh:

cd ~/projects/grizzly/moose/scripts/

./update_and_rebuild_libmesh.sh

And finally recompile Grizzly:

cd ~/projects/grizzly/

make (add -jn to run on multiple "n" processors)

2.3 Executing Grizzly

When first starting out with Grizzly, it is recommended to start from an example problem similar to the prob-

lem that you are trying to solve. Multiple examples can be found at grizzly/examples/ and grizzly/assessment/.

It may be worth running the example problems to see how the code works and modifying input parameters

to see how the run time, results and convergence behavior change.

To demonstrate running Grizzly, consider the 2d strip model of the global response of an RPV included

in the Grizzly distribution:

cd ~/projects/grizzly/demonstration/rpv_global/2d_strip

# To run with one processor

~/projects/grizzly/grizzly-opt -i 2d_strip.i

# To run in parallel (2 processors)

mpiexec -n 2 ../../grizzly-opt -i 2d_strip.i

Note that the procedure for running this model in parallel is shown only for illustrative purposes. This

particular model is quite small, and would not benefit from being run in parallel, although it can be run that

way.

2.4 Getting Started

2.4.1 Input to Grizzly

Grizzly simulation models are defined by the user through a text file that defines the parameters of the run.

This text file specifies the set of code objects that are composed together to simulate a physical problem, and

provides parameters that control how those objects behave and interact with each other. This text file can be

prepared using any text editor.

In addition to the text file describing the model parameters, Grizzly also requires a definition of the finite

element mesh on which the physics equations are solved. The mesh can be generated internally by Grizzly

using parameters defined in Grizzly’s input file for very simple geometries, or can be read from a file as

defined in the Grizzly input file. Grizzly supports the full set of mesh file formats supported by MOOSE,

although the most common mesh format is the ExodusII format.

6



2.4.2 Post Processing

Grizzly typically writes solution data to an ExodusII file. Data may also be written in other formats, a simple

comma separated file giving global data being the most common.

Several options exist for viewing ExodusII results files. These include commercial as well as open-source

tools. One good choice is Paraview, which is open-source.

Paraview is available on a variety of platforms. It is capable of displaying node and element data in

several ways. It will also produce line plots of global data or data from a particular node or element. A

complete description of Paraview is not possible here, but a quick overview of using Paraview with Grizzly

results is available in the Grizzly workshop material.

2.4.3 Graphical User Interface

It is worth noting that a graphical user interface (GUI) exists for all MOOSE-based applications. This GUI

is named Peacock. Information about Peacock and how to set it up for use may be found on the MOOSE

wiki page.

Peacock may be used to generate a text input file. It is also capable of submitting the analysis. It also

provides basic post processing capabilities.

7



3 Input File Structure

3.1 Basic Syntax

The input file used by Grizzly (or any MOOSE application) is broken into sections or blocks identified with

square brackets. The type of input block is placed in the opening brackets, and empty brackets mark the end

of the block.

[BlockName]

<block lines and subblocks>

[]

Each block may contain an arbitrary number of line commands to define parameters related to that block.

They can also optionally contain one or more subblocks, which may in turn contain their own nested sub-

blocks. Subblocks are opened and closed with the following syntax:

[./subblock_name]

<line commands>

[../]

Note that all subblocks contained within a given block must have unique names (within the opening []

brackets).

Parameters are defined with line commands, and are given as key/value pairs separated by an equals sign

(=). They specify parameters to be used by the object being described. The key is a string (no whitespace),

and the value may be a string, an integer, a real number, or a list of strings, integers, or real numbers. Lists

are given in single quotes and are separated by whitespace.

The following are examples of line commands for a single parameter and for a list of parameters:

single_parameter = 2.3

list_of_parameters = ’1.0 2.3 3.7’

Blocks and subblocks at any level can contain line commands, which must be appropriate for the scope

of the block containing them. Most of the time, blocks are used to create instances of MOOSE objects, and

contain a type = parameter to specify the type of MOOSE object to be created. The name of the MOOSE

object specified in the parameter corresponds to the name of the class in the C++ source code.

Each object type has a unique set of input parameters that are valid for specifying the behavior of that

object. Some parameters are required, and some are optional, and revert to default behavior if they are not

specified. An error message is generated if a line command does not apply within the scope in which it is

provided. Repeating a line within a block also results in an error.

In this document, line commands are shown with the keyword, an equal sign, and, in angle brackets, the

value. If a default value exists for that line command, it is shown in parentheses.

In the initial description of a block, line commands common to all subblocks will be described. Those line

commands are then omitted from the description of the subblocks but are nonetheless valid line commands

for those subblocks.

The name of a subblock ([./<name>]) is arbitrary. However, these names should be chosen to be mean-

ingful because they can be used to refer to those entities elsewhere in the input file. Not every created entity

is referenced elsewhere, but a name must be created for every entity regardless.

8



3.2 Summary of MOOSE Object Types

MOOSE is an objected-oriented system with well-defined interfaces for applications to define their own

physics-specific code modules. The following is a listing of the major types of MOOSE objects used by

Grizzly:

• Variable

• Kernel

• AuxVariable

• AuxKernel

• Material

• BoundaryCondition

• Function

• Postprocessor

• VectorPostprocessor

• Constraint

• Damper

Specialized versions of these object types are implemented to provide the functionality needed to model

physics of interest for Grizzly.

3.3 Grizzly Syntax Page

A complete listing of all input syntax options in MOOSE is available on the MOOSE Documentation page.

See the section on Input File Documentation. Note also that you can run

grizzly-opt --dump

to get a list of valid input options for Grizzly.

3.4 Units

Grizzly can be run using any unit system preferred by the user. Empirical models within Grizzly that depend

on a specific unit system are noted in this documentation.

9



4 Common Commands For All Physics

4.1 GlobalParams

The GlobalParams block specifies parameters that are available, as appropriate, in any other block or sub-

block in the input file. For example, consider a subblock that accepts a line command with the keyword

value. If the subblock has a line command for value, that line command will be used regardless of what is

in GlobalParams. However, if the line command is missing in the subblock but defined in GlobalParams,

the subblock will use the parameter defined in GlobalParams. In the example below, the line commands

order = FIRST and family = LAGRANGE will be available in all other blocks and subblocks defined in the

input file.

[GlobalParams]

order = FIRST

family = LAGRANGE

[]

4.2 Problem

The Problem block is optionally used to define parameters for the Problem object. It only needs to be

included to specify non-default behavior. Typically, the only parameter set here is coord_type, which

specifies that the model should be treated as axisymmetric (RZ) or spherically symmetric (RSPHERICAL).

For 3D or 2D plane strain models, this block may be omitted.

[Problem]

coord_type = <string>

[]

4.3 Mesh

The Mesh block’s purpose is to give details about the finite element mesh to be used. Externally created

meshes can be imported from separate files in a variety of formats supported by the libMesh library that is

used by MOOSE for finite element functionality. The most commonly used mesh is ExodusII.

Typically meshes are created using the mesh generation tool Cubit (for U.S. government users) or Trelis

(the commercialized version of Cubit).

[Mesh]

file = <string>

displacements = <string list>

patch_size = <integer> (40)

[]

file Required. The name of the file containing the mesh.

displacements List of the displacement variables used to create the

displaced mesh. This line must be given if the model is to

use contact or large displacement theory. Typically disp_x

disp_y disp_z for a 3D model.

10



4.4 Executioner

The Executioner block describes how the simulation will be executed. It includes commands to control

the solver behavior and timestepping. Time stepping is controlled by a combination of commands in the

Executioner block, and the TimeStepper block nested within the Executioner block.

[Executioner]

type = <string>

solve_type = <string>

petsc_options = <string list>

petsc_options_iname = <string list>

petsc_options_value = <string list>

line_search = <string>

l_max_its = <integer>

l_tol = <real>

nl_max_its = <integer>

nl_rel_tol = <real>

nl_abs_tol = <real>

start_time = <real>

dt = <real>

end_time = <real>

num_steps = <integer>

dtmax = <real>

dtmin = <real>

[TimeStepper]

#TimeStepper commands

[../]

type Required. Several available. Typically Transient.

solve_type One of PJFNK (preconditioned JFNK), JFNK (JFNK),

NEWTON (Newton), or FD (Jacobian computed by finite

difference–serial only, slow).

petsc_options PETSc flags.

petsc_options_iname Names of PETSc name/value pairs.

petsc_options_value Values of PETSc name/value pairs.

line_search Line search type. Typically none.

l_max_its Maximum number of linear iterations per solve.

l_tol Linear solve tolerance.

nl_max_its Maximum number of nonlinear iterations per solve.

nl_rel_tol Nonlinear relative tolerance.

nl_rel_abs Nonlinear absolute tolerance.

start_time The start time of the analysis.

end_time The end time of the analysis.

num_steps The maximum number of timesteps.

dtmax The maximum allowed timestep size.

dtmin The minimum allowed timestep size.

11



Several Executioner types exist, although the Transient type is typically the appropriate one to use

for transient analyses.

Similarly, many PETSc options exist. Please see the online PETSc documentation for details.

4.5 Timestepping

The method used to calculate the size of the timesteps taken by MOOSE is controlled by the TimeStepper

block. There are a number of types of TimeStepper available. Three of the types most commonly used

are described here. These permit the timestep to be controlled directly by providing either a single fixed

timestep to take throughout the analysis, by providing the timestep as a function of time, or by using adaptive

timestepping algorithm can be used to modify the time step based on the difficulty of the iterative solution, as

quantified by the numbers of linear and nonlinear iterations required to drive the residual below the tolerance

required for convergence.

4.5.1 ConstantDT

The ConstantDT type of TimeStepper simply takes a constant timestep size throughout the analysis.

[TimeStepper]

type = ConstantDT

dt = <real>

[../]

type ConstantDT

dt Required. The initial timestep size.

ConstantDT begins the analysis taking the step specified by the user with the dt parameter. If the solver

fails to obtain a converged solution for a given step, the executioner cuts back the step size and attempts to

advance the time from the previous step using a smaller time step. The timestep is cut back by multiplying

the timestep by 0.5.

If the solution with the cut-back timestep is still un-successful, it is repeatedly cut back until a success-

ful solution is obtained. The user can specify a minimum timestep through the dtmin parameter in the

Executioner block. If the timestep must be cut back below the minimum size without obtaining a solution,

the code will exit with an error. If the timestep is cut back using ConstantDT, that cut-back step size will be

used for the remainder of the the analysis.

4.5.2 FunctionDT

If the FunctionDT type of TimeStepper is used, time steps vary over time according to a user-defined

function.

[TimeStepper]

type = FunctionDT

time_t = <real list>

time_dt = <real list>

[../]

12



type FunctionDT

time_t The abscissas of a piecewise linear function for timestep size.

time_dt The ordinates of a piecewise linear function for timestep size.

The timestep is controlled by a piecewise linear function defined using the time_t and time_dt pa-

rameters. A vector of timesteps is provided using the time_dt parameter. An accompanying vector of

corresponding times is specified using the time_t parameter. These two vectors are used to form a timestep

vs. time function. The timestep for a given step is computed by linearly interpolating between the pairs of

values provided in the vectors.

The same procedure that is used with ConstantDT is used to cut back the timestep from the user-specified

value if a failed solution occurs.

4.5.3 IterationAdaptiveDT

The IterationAdaptiveDT type of TimeStepper provides a means to adapt the timestep size based on the

difficulty of the solution.

[TimeStepper]

type = IterationAdaptiveDT

dt = <real>

optimal_iterations = <integer>

iteration_window = <integer> (0.2*optimal_iterations)

linear_iteration_ratio = <integer> (25)

growth_factor = <real>

cutback_factor = <real>

timestep_limiting_function = <string>

max_function_change = <real>

force_step_every_function_point = <bool> (false)

[../]

dt Required. The initial timestep size.

optimal_iterations The target number of nonlinear iterations for adaptive

timestepping.

iteration_window The size of the nonlinear iteration window for adaptive

timestepping.

linear_iteration_ratio The ratio of linear to nonlinear iterations to determine target

linear iterations and window for adaptive timestepping.

growth_factor Factor by which timestep is grown if needed.

cutback_factor Factor by which timestep is cut back if needed.

timestep_limiting_function Function used to control the timestep.

max_function_change Maximum change in the function over a timestep.

force_step_every_function_pointControls whether a step is forced at every point in the

function.

IterationAdaptiveDT grows or shrinks the timestep based on the number of iterations taken to obtain

a converged solution in the last converged step. The required optimal_iterations parameter controls the

number of nonlinear iterations per timestep that provides optimal solution efficiency. If more iterations than

13



that are required to obtain a converged solution, the timestep may be too large, resulting in undue solution

difficulty, while if fewer iterations are required, it may be possible to take larger timesteps to obtain a solution

more quickly.

A second parameter, iteration_window, is used to control the size of the region in which the timestep

is held constant. As shown in Figure [fig:adaptive_dt_criteria], if the number of nonlinear iterations for

convergence is lower than (optimal_iterations−iteration_window), the timestep is increased, while if

more than (optimal_iterations+iteration_window), iterations are required, the timestep is decreased.

The iteration_window parameter is optional. If it is not specified, it defaults to 1∕5 the value specified for

optimal_iterations.

The decision on whether to grow or shrink the timestep is based both on the number of nonlinear iterations

and the number of linear iterations. The parameters mentioned above are used to control the optimal iterations

and window for nonlinear iterations. The same criterion is applied to the linear iterations. Another parameter,

linear_iteration_ratio, which defaults to 25, is used to control the optimal iterations and window for the

linear iterations. These are calculated by multiplying linear_iteration_ratio by optimal_iterations

and iteration_window, respectively.

To grow the timestep, the growth criterion must be met for both the linear iterations and nonlinear

iterations. If the timestep shrinkage criterion is reached for either the linear or nonlinear iterations, the

timestep is decreased. To control the timestep size only based on the number of nonlinear iterations, set

linear_iteration_ratio to a large number.

If the timestep is to be increased or decreased, the amount of the increase or decrease in the timestep

is controlled by the growth_factor and cutback_factor parameters, respectively. If a solution fails to

converge when adaptive time stepping is active, a new attempt is made using a smaller timestep in the same

manner as with the fixed timestep methods. The maximum and minimum timesteps can be optionally spec-

ified in the Executioner block using the dtmax and dtmin parameters, respectively.

In addition to controlling the timestep based on the iteration count, IterationAdaptiveDT also has

an option to limit the timestep based on the behavior of a time-dependent function, optionally specified by

providing the function name in timestep_limiting_function. This is typically a function that is used to

drive boundary conditions of the model. The step is cut back if the change in the function from the previous

step exceeds the value specified in max_function_change. This allows the step size to be changed to limit

the change in the boundary conditions applied to the model over a step. In addition to that limit, the Boolean

parameter force_step_every_function_point can be set to true to force a timestep at every point in a

PiecewiseLinear function.

0 iterations

increase time step decrease time stepmaintain time step

optim
al

window

window

Figure 2: Criteria used to determine adaptive timestep size

14



4.6 PETSc Options

The PETSc solver used by MOOSE is very flexible and permits the use of multiple solution strategies. The

full set of options provided by PETSc cannot be covered in detail here. The solver options used by any

code that uses PETSc can be controlled with command line parameters. MOOSE-based codes addition-

ally permit the specification of these PETSc options through two parameters: petsc_options_iname and

petsc_options_value in the Executioner block. Using these options permits specifying the solver op-

tions in the input file so that they do not need to be specified at the command line, which can greatly simplify

the process of running the code.

The following PETSc options invoke the use of an algebraic multigrid preconditioner, which scales well

in parallel and uses minimal memory.

[Executioner]

...

petsc_options_iname = ’-ksp_gmres_restart -pc_type -pc_hypre_type

-pc_hypre_boomeramg_max_iter’

petsc_options_value = ’201 hypre boomeramg 4’

...

[../]

These options are recommended for most problems.

4.7 Quadrature

The order of the quadrature rule used for finite element integration can optionally be specified using a

[./Quadrature] subblock within the [Executioner] block as follows:

[./Quadrature]

type = <string>

element_order = <string>

order = <string>

side_order = <string>

[../]

type The type of quadrature used. Default is Gauss.

element_order Order of quadrature on the elements.

order Order of quadrature used.

side_order Order of quadrature used on the sides.

4.8 Variables

The Variables block is where all of the primary solution variables are identified. The name of each variable

is assigned according to the name of its subblock. Primary solution variables often include temperature

(usually named temp) and displacement (usually named disp_x, disp_y, and disp_z).

[Variables]

[./var1]

order = <string>

15



family = <string>

[../]

[./var2]

order = <string>

family = <string>

initial_condition = <real>

scaling = <real> (1)

[../]

[]

order The order of the variable. Typical values are FIRST and

SECOND.

family The finite element shape function family. A typical value is

LAGRANGE.

initial_condition Optional initial value to be assigned to the variable. Zero is

assigned if this line is not present.

scaling Amount to scale the variable during the solution process.

This scaling affects only the residual and preconditioning

steps and not the final solution values. This is sometimes

helpful when solving coupled systems where one variable’s

residual is orders of magnitude different that the other

variables’ residuals.

4.9 Kernels

Kernels are used to evaluate integrals associated with a given term in a PDE. They often compute quantities

based on functions, solution variables, auxiliary variables, and material properties. All Kernels act on

blocks. If no block is specified, the Kernel will act on the entire model.

[Kernels]

[./name]

type = <kernel type>

block = <string list>

...

[../]

[]

type Type of kernel.

block List of blocks. Either block numbers or names.

4.9.1 TimeDerivative

Kernel for applying a time rate of change term (𝜕𝑢∕𝜕𝑡) to the model.

[./timederivative]

type = TimeDerivative

16



variable = <variable>

[../]

type TimeDerivative

variable Required. Variable associated with this volume integral.

4.9.2 BodyForce

Kernel for applying an arbitrary body force to the model.

[./bodyforce]

type = BodyForce

variable = <variable>

value = <real> (0)

function = <string> (1)

[../]

type BodyForce

variable Required. Variable associated with this volume

integral.

value Constant included in volume integral. Multiplied

by the value of function if present.

function Function to be multiplied by value and used in the

volume integral.

4.10 AuxVariables

The AuxVariables block is where the auxiliary variables are identified. Auxiliary variables are field vari-

ables that are not solved for in the equation system, but are used for storing the values of auxiliary quantities

that are used in the simulation or for output. The name of each auxiliary variable is assigned according to

the name of its subblock.

[AuxVariables]

[./var1]

order = <string>

family = <string>

[../]

[./var2]

order = <string>

family = <string>

initial_condition = <real>

[../]

[]

order The order of the variable. Typical values are CONSTANT,

FIRST, and SECOND.

17



family The finite element shape function family. Typical values are

MONOMIAL and LAGRANGE.

initial_condition Optional initial value to be assigned to the variable. Zero is

assigned if this line is not present.

4.11 Materials

The Materials block is for specifying material properties and models.

[Materials]

[./name]

type = <material type>

block = <string list>

...

[../]

[]

type Type of material model

block List of blocks. Either block numbers or names.

4.12 Postprocessors

MOOSE Postprocessors compute a single scalar value at each timestep. These can be minimums, maxi-

mums, averages, volumes, or any other scalar quantity.

[Postprocessors]

[./name]

type = <postprocessor type>

block = <string list>

boundary = <string list>

execute_on = <string list>

outputs = <string>

...

[../]

[]

type Type of postprocessor

block List of blocks. Either block numbers or names.

boundary List of boundaries (side sets). Either boundary numbers or

names.

execute_on Set to (nonlinear | linear | timestep_end |

timestep_begin) to execute at that moment.

outputs Vector of output names where you would like to restrict the

output of variable(s) associated with the postprocessor.

18



Most Postprocessors act on either boundaries or blocks. If no block or boundary is specified, the

Postprocessor will act on the entire model. There are a few Postprocessors that act on specific nodes

or elements within the finite element mesh.

4.12.1 ElementalVariableValue

In some cases it may be of interest to output an elemental variable value (e.g., stress) at a particular location

in the model. This is accomplished by using the ElementalVariableValue postprocessor.

[./elementalvariablevalue]

type = ElementalVariableValue

elementid = <string>

variable = <string>

[../]

type ElementalVariableValue

elementid Required. The global element id from the mesh to which

this postprocessor is to be applied.

variable Required. The variable whose value is output to this

postprocessor for the given element.

4.12.2 NodalVariableValue

In order to obtain the value of a nodal variable at a particular location (i.e., temperature and displacement)

a NodalVariableValue postprocessor is used. For example, this postprocessor is useful for obtaining the

centerline temperature at the location of a thermocouple to compare against experimental data.

[./nodalvariablevalue]

type = NodalVariableValue

elementid = <string>

scale_factor = <real>

variable = <string>

[../]

type NodalVariableValue

nodeid Required. The global node id from the mesh to which this

postprocessor is to be applied.

scale_factor A scalar value to be multiplied by the value of the variable.

variable Required. The variable whose value is output to this

postprocessor for the given node.

4.12.3 NumNonlinearIterations

NumNonlinearIterations reports the number of nonlinear iterations in the just-completed solve.

[./numnonlineariters]

type = NumNonlinearIterations

19



[../]

type NumNonlinearIterations

4.12.4 PlotFunction

PlotFunction gives the value of the supplied function at the current time, optionally scaled with scale_factor.

[./plotfunction]

type = PlotFunction

function = <string>

scale_factor = <real> (1)

[../]

type PlotFunction

function Required. The function to evaluate.

scale_factor Scale factor to be applied to the function value.

4.12.5 SideAverageValue

SideAverageValue computes the area- or volume-weighted average of the named variable. It may be used,

for example, to calculate the average temperature over a side set.

[./sideaveragevalue}

type = SideAverageValue

variable = <string>

[../]

type SideAverageValue

variable Required. The variable this Postprocessor acts on.

4.12.6 SideFluxIntegral

SideFluxIntegral computes the integral of the flux over the given boundary.

[./sidefluxintegral]

type = SideFluxIntegral

variable = <string>

diffusivity = <string>

[../]

type SideFluxIntegral

variable Required. Variable to be used in the flux calculation.

diffusivity Required. The diffusivity material property to be used in the

calculation.

20



4.12.7 TimestepSize

TimestepSize reports the timestep size.

[./dt]

type = TimestepSize

[../]

type TimestepSize

4.13 VectorPostprocessors

VectorPostprocessors computes vectors of values and outputs them in comma separated files, one file

for each VectorPostprocessor at each timestep. The parameter csv must be set to true in the Outputs block

to allow the files to be output.

[VectorPostprocessors]

[./name]

type = <vectorpostprocessor type>

execute_on = <string list>

...

[../]

[]

type Type of postprocessor

execute_on Set to (nonlinear | linear | timestep_end |

timestep_begin) to execute at that moment.

4.13.1 LineValueSampler

The LineValueSampler VectorPostprocessor samples the values of a variable along a user-specified line.

[./linevaluesampler]

type = LineValueSampler

variable = <string>

start_point = <vector>

end_point = <vector>

num_points = <integer>

sort_by = <x or y or z or id>

[../]

type LineValueSampler

variable Required The names of the variables that this

VectorPostprocessor operates on.

start_point Required The beginning of the line.

end_point Required The ending of the line.

21



num_points Required The number of points to sample along the line.

sort_by Required What to sort the samples by.

4.14 Functions

4.14.1 Composite

The Composite function takes an arbitrary set of functions, provided in the functions parameter, evaluates

each of them at the appropriate time and position, and multiplies them together. The function can optionally

be multiplied by a scale factor, which specified using the scale_factor parameter.

[./composite]

type = CompositeFunction

functions = <string list>

scale_factor = <real> (1.0)

[../]

type CompositeFunction

functions List of functions to be multiplied together.

scale_factor Scale factor to be applied to resulting function. Default is 1.

4.14.2 ParsedFunction

The ParsedFunction function takes a mathematical expression in value. The expression can be a function

of time (t) or coordinate (x, y, or z). The expression can include common mathematical functions. Examples

include ’4e4+1e2*t’, ’sqrt(x*x+y*y+z*z)’, and ’if(t<=1.0, 0.1*t, (1.0+0.1)*cos(pi/2*(t-1.0))

- 1.0)’. Constant variables may be used in the expression if they have been declared with vars and defined

with vals. Further information can be found at http://warp.povusers.org/FunctionParser/.

[./parsedfunction]

type = ParsedFunction

value = <string>

vals = <real list>

vars = <string list>

[../]

type ParsedFunction

value Required. String describing the function.

vals Values to be associated with variables in vars.

vars Variable names to be associated with values in vals.

4.14.3 PiecewiseBilinear

The PiecewiseBilinear function reads a csv file and interpolates values based on the data in the file. The

interpolation is based on x-y pairs. If axis is given, time is used as the y index. Either xaxis or yaxis or

both may be given. Time is used as the other index if one of them is not given. If radius is given, xaxis

22



and yaxis are used to orient a cylindrical coordinate system, and the x-y pair used in the query will be the

radial coordinate and time.

[./piecewiselinear]

type = PiecewiseBilinear

data_file = <string>

axis = <0, 1, or 2 for x, y, or z>

xaxis = <0, 1, or 2 for x, y, or z>

yaxis = <0, 1, or 2 for x, y, or z>

scale_factor = <real> (1.0)

radial = <bool> (false)

[../]

type PiecewiseBilinear

data_file File holding the csv data.

axis Coordinate direction to use in the function evaluation.

xaxis Coordinate direction used for x-axis data.

yaxis Coordinate direction used for y-axis data.

scale_factor Scale factor to be applied to resulting function. Default is 1.

radial Set to true if interpolation should be done along a radius

rather than along a specific axis. Requires xaxis and yaxis.

4.14.4 PiecewiseConstant

The PiecewiseConstant function defines the data using a set of x-y data pairs. Instead of linearly inter-

polating between the values, however, the PiecewiseConstant function is constant when the abscissa is

between the values provided by the user. The direction parameter controls whether the function takes

the value of the abscissa of the user-provided point to the right or left of the value at which the function is

evaluated.

[./piecewiseconstant]

type = PiecewiseConstant

x = <real list>

y = <real list>

xy_data = <real list>

data_file = <string>

format = <string> (rows)

scale_factor = <real> (1.0)

axis = <0, 1, or 2 for x, y, or z>

direction = <string> (left)

[../]

type PiecewiseConstant

x List of x values for x-y data.

y List of y values for x-y data.

xy_data List of pairs of x-y data points.

23



data_file Name of an file containing x-y data.

format Format of x-y data in external file.

scale_factor Scale factor to be applied to resulting function. Default is 1.

axis Coordinate direction to use in the function evaluation. If not

present, time is used as the function input.

4.14.5 PiecewiseLinear

The PiecewiseLinear function performs linear interpolations between user-provided pairs of x-y data. The

x-y data can be provided in three ways. The first way is through a combination of the x and y parameters,

which are lists of the x and y coordinates of the data points that make up the function. The second way is

in the xy_data parameter, which is a list of pairs of x-y data that make up the points of the function. This

allows for the function data to be specified in columns by inserting line breaks after each x-y data point.

Finally, the x-y data can be provided in an external file containing comma-separated values. The file name

is provided in data_file, and the data can be provided in either rows (default) or columns, as specified in

the format parameter.

By default, the x-data corresponds to time, but this can be changed to correspond to x, y, or z coordinate

with the axis line. If the function is queried outside of its range of x data, it returns the y value associated

with the closest x data point.

[./piecewiselinear]

type = PiecewiseLinear

x = <real list>

y = <real list>

xy_data = <real list>

data_file = <string> (rows)

format = <string>

scale_factor = <real> (1.0)

axis = <0, 1, or 2 for x, y, or z>

[../]

type PiecewiseLinear

x List of x values for x-y data.

y List of y values for x-y data.

xy_data List of pairs of x-y data points.

data_file Name of an file containing x-y data.

format Format of x-y data in external file.

scale_factor Scale factor to be applied to resulting function. Default is 1.

axis Coordinate direction to use in the function evaluation. If not

present, time is used as the function input.

4.15 BCs

The BCs block is for specifying various types of boundary conditions. Boundary conditions that are appli-

cable to any physics are listed here.

[BCs]

24



[./name]

type = <BC type>

boundary = <string list>

...

[../]

[]

type Type of boundary condition.

boundary List of boundaries (side sets). Either boundary numbers or

names.

4.15.1 DirichletBC

The DirichletBC boundary condition is used to directly specify the value of a solution variable. It can be

applied to any solution variable.

[./dirichletbc]

type = DirichletBC

variable = <variable>

boundary = <string list>

value = <real>

[../]

type DirichletBC

variable Required. Primary variable associated with this boundary

condition.

boundary Required. List of boundary names or ids where this

boundary condition will apply.

value Required. Value to be assigned.

4.15.2 PresetBC

The PresetBC takes the same inputs as DirichletBC and also acts as a Dirichlet boundary condition. How-

ever, the implementation is slightly different. PresetBC causes the value of the boundary condition to be

applied before the solve begins where DirichletBC enforces the boundary condition as the solve progresses.

In certain situations, one is better than another.

4.15.3 FunctionDirichletBC

[./functiondirichletbc]

type = FunctionDirichletBC

variable = <variable>

boundary = <string list>

function = <string>

[../]

25



type FunctionDirichletBC

variable Required. Primary variable associated with this boundary

condition.

boundary Required. List of boundary names or ids where this

boundary condition will apply.

function Required. Function that will give the value to be applied by

this boundary condition.

4.15.4 FunctionPresetBC

The FunctionPresetBC takes the same inputs as FunctionDirichletBC and also acts as a Dirichlet bound-

ary condition. However, the implementation is slightly different. FunctionPresetBC causes the value of

the boundary condition to be applied before the solve begins where FunctionDirichletBC enforces the

boundary condition as the solve progresses. In certain situations, one is better than another.

4.16 AuxKernels

AuxKernels are used to compute values for AuxVariables. They often compute quantities based on func-

tions, solution variables, and material properties. AuxKernels can apply to blocks or boundaries. If no block

or boundary is specified, the AuxKernel applies to the entire model.

[AuxKernels]

[./name]

type = <AuxKernel type>

block = <string list>

boundary = <string list>

...

[../]

[]

type Type of auxiliary kernel.

block List of blocks. Either block numbers or names.

boundary List of boundaries (side sets). Either boundary numbers or

names.

4.16.1 MaterialRealAux

The MaterialRealAux AuxKernel is used to output material properties. Typically, the AuxVariable com-

puted by MaterialRealAux will be an element-level, constant variable. The computed value will be the

volume-averaged quantity over the element.

[./materialrealaux]

type = MaterialRealAux

property = <material property>

variable = <variable>

[../]

26



type MaterialRealAux

property Required. Name of material property.

variable Required. Name of AuxVariable that will hold result.

4.17 Constraints

The Constraints block is for specifying various types of constraints. Constraints that are applicable to any

physics are listed here.

[Constraints]

[./name]

type = <Constraint type>

...

[../]

[]

type Type of constraint.

4.17.1 EqualValueBoundaryConstraint

The EqualValueBoundaryConstraint Constraint is used to constrain a variable to have the same value on

a boundary or set of nodes.

[./equalvalueboundaryconstraint]

type = EqualValueBoundaryConstraint

variable = <variable>

master = <integer>

slave = <string>

slave_node_ids = <integer list>

formulation = <Penalty or Kinematic> (Penalty)

penalty = <real>

[../]

type EqualValueBoundaryConstraint

variable Required. Primary variable associated with this boundary

condition.

master The id of the master node. If no id is provided, first node of

slave set is chosen.

slave The boundary id associated with the slave side. Must use

either this or slave_node_ids.

slave_node_ids The ids of the slave nodes. Must use either this or slave.

formulation Formulation used to calculate constraint. One of Penalty or

Kinematic.

penalty Required The penalty stiffness value to be used in the

constraint.

27



4.18 UserObjects

UserObjects in MOOSE provide a capability to implement a wide variety of capabilities that do not readily

fit into the interfaces provided by other types of MOOSE objects. These are defined within the UserObjects

block in the input file.

[UserObjects]

[./name]

type = <UserObject type>

...

[../]

[]

type Type of user object.

4.19 Outputs

The Outputs block lists parameters that control the frequency and type of results files produced. It is possible

to create multiple output objects each outputting at different intervals, or different variables, or varying file

types. The Outputs system is very complex and enables a large amount of customization. This section will

highlight the capabilities of the system.

4.19.1 Basic Input File Syntax

To enable output an input file must contain an Outputs block. The simplest method for enabling output is to

utilize the shortcut syntax as shown below, which enables the Console output (prints to screen) and Exodus

output for writing data to a file.

[Outputs]

console = true #output to the screen with default settings

exodus = true #output to ExodusII file with default settings

[]

4.19.2 Advanced Syntax

To take full advantage of the output system the use of subblocks is required. For example, the input file

snippet below is exactly equivalent, including the subblock names, to the snippet shown above that utilizes

the shortcut syntax.

[Outputs]

[./console]

type = Console #output to the screen with default settings

[../]

[./exodus]

type = Exodus #output to ExodusII file with default settings

[../]

[]

28



However, the subblock syntax allows for increased control over the output and allows for multiple outputs

of the same type to be specified. For example, the following creates two Exodus outputs, one outputting the

a mesh at every timestep including the initial condition the other outputs every 3 timesteps without the initial

condition. Additionally, performance logging was enabled for Console output.

[Outputs]

execute_on = ’timestep_end’ # Limit the output to timestep end (no initial state)

[./console]

type = Console

perf_log = true # enable performance logging

[../]

[./exodus]

type = Exodus

execute_on = ’initial timestep_end’ # output the initial state

[../]

[./exodus_3] # create a second [Exodus II][1] output

# that utilizes a different output interval

type = Exodus

file_base = exodus_3 # set the file base

# (the extension is automatically applied)

interval = 3 # only output every third step

[../]

[]

4.19.3 Common Output Parameters

In addition to allowing for shortcut syntax, the Outputs block also supports common parameters. For ex-

ample, the parameter execute_on may be specified outside of individual subblocks, indicating that all sub-

blocks should output at the specified time. If within a subblock the parameter is given a different value,

the subblock parameter takes precedence. The input file snippet below demonstrate the usage of a common

values as well as the use of multiple output blocks.

[Outputs]

execute_on = ’timestep_end’ # disable the output of initial state

vtk = true # output VTK file with default setting

[./exodus]

type = Exodus

execute_on = ’initial’ # this file will contain ONLY the initial state

[../]

[./exodus_displaced]

type = Exodus

file_base = displaced

use_displaced = true

interval = 3 # this file will only output every third time step

[../]

[]

29



4.19.4 File Output Names

The default naming scheme for output files utilizes the input file name (e.g., input.i) with a suffix that differs

depending on how the output is defined:

• output files created using the shortcut syntax have an _out suffix

• subblocks use the actual subblock name as the suffix.

For example, if the input file (input.i) contained the following [Outputs] block, two files would be

created: input_out.e and input_other.e.

[Outputs]

console = true

exodus = true # creates input_out.e

[./other] # creates input_other.e

type = Exodus

interval = 2

[../]

[]

4.20 Dampers

Dampers are used to decrease the attempted change to the solution with each nonlinear step. This can be

useful in preventing the solver from changing the solution dramatically from one step to the next. This may

prevent, for example, the solver from attempting to evaluate negative temperatures.

The MaxIncrement damper is commonly used.

4.20.1 MaxIncrement

The MaxIncrement damper limits the change of a variable from one nonlinear step to the next.

[Dampers]

[./maxincrement]

type = MaxIncrement

max_increment = <real>

variable = <string>

[../]

[]

type MaxIncrement

max_increment Required. The maximum change in solution variable

allowed from one nonlinear step to the next.

variable Required. Variable that will not be allowed to change

beyond max_increment from nonlinear step to nonlinear

step.

30



5 Thermal Governing Equations and Associated Commands

The energy balance is given in terms of the heat conduction equation

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+ ∇ ⋅ 𝒒 = 0,

where 𝑇 , 𝜌 and 𝐶𝑝 are the temperature, density and specific heat, respectively. The heat flux is given as

𝒒 = −𝑘∇𝑇 ,

where 𝑘 denotes the thermal conductivity of the material.

5.1 Kernels

5.1.1 Heat Conduction

Kernel for diffusion of heat or divergence of heat flux.

[./heatconduction]

type = HeatConduction

variable = <variable>

[../]

type HeatConduction

variable Required. Variable name corresponding to the heat

conduction equation. Typically temp.

5.1.2 Heat Conduction Time Derivative

Kernel for 𝜌𝐶𝑝𝜕𝑇 ∕𝜕𝑡 term of the heat equation.

[./heatconductiontimederivative]

type = HeatConductionTimeDerivative

variable = <variable>

[../]

type HeatConductionTimeDerivative

variable Required. Variable name corresponding to the heat

conduction equation. Typically temp.

5.1.3 Heat Source

The HeatSource kernel applies a volumetric heat source to specified blocks within the model. Built on

the BodyForce kernel’s code, the HeatSource kernel provides a more relevant name for easier input-file

specification.

[./heatsource]

type = HeatSource

31



variable = <variable>

value = <real> (1)

function = <string> (1)

block = <string list>

[../]

type HeatSource

variable Required. The variable associated with the heat source.

value Value of the heat source; will be multiplied by the optional

function.

function The function describing the volumetric heat source.

block The list of block id’s (SubdomainID) to which the heat

source will be applied.

5.2 Materials

5.2.1 HeatConductionMaterial

HeatConductionMaterial is a general-purpose material model for heat conduction. It sets the thermal

conductivity and specific heat at integration points.

[heatconductionmaterial]

type = HeatConductionMaterial

temp = <string>

thermal_conductivity = <real>

thermal_conductivity_temperature_function = <string>

specific_heat = <real>

specific_heat_temperature_function = <string>

block = <string list>

[../]

type HeatConductionMaterial

temp Name of temperature variable. Typically temp.

thermal_conductivity Coefficient of thermal conductivity.

thermal_conductivity_temperature_functionFunction describing thermal conductivity as a function of

temperature.

specific_heat Specific heat capacity.

specific_heat_temperature_functionFunction describing specific heat capacity as a function of

temperature.

block List of blocks this material applies to.

5.3 BCs

5.3.1 ConvectiveFluxFunction

The ConvectiveFluxFunction boundary condition determines the value on a boundary based upon the

heat transfer coefficient of the fluid on the outside of boundary and far-field temperature.

32



[./convectivefluxFunction]

type = ConvectiveFluxFunction

variable = <variable>

boundary = <string list>

T_infinity= <string>

coefficient = <real>

coefficient_function = <string>

[../]

type ConvectiveFluxFunction

variable Required. Primary variable associated with this boundary

condition.

boundary Required. List of boundary names or ids where this

boundary condition will apply.

T_infinity Required. The name of the function describing the far-field

temperature.

coefficient Required. The heat transfer coefficient of the fluid in contact

with the boundary. If coefficient_function is provided

this coefficient multiplies the function.

coefficient_function Function defining the heat transfer coefficient as a function

of time.

33



6 Mechanical Governing Equation, Kinematics, and Associated Com-
mands

Momentum conservation is prescribed assuming static equilibrium at each time increment using Cauchy’s

equation,

∇ ⋅ 𝝈 + 𝜌𝒇 = 0,
where𝝈 is the Cauchy stress tensor and𝒇 is the body force per unit mass (e.g. gravity). The displacement field

𝑢, which is the primary solution variable, is connected to the stress field via the strain, through a constitutive

relation.

For geometrically linear analysis, the strain 𝜖 is defined as 1∕2[∇𝒖 + ∇𝒖𝑇 ]. Furthermore, with a linear

elastic constitutive model, the stress is simply 𝐶 𝜖. We now outline our approach for nonlinear analysis. We

follow the approach in [1] and the software package FMA3D [2].

We begin with a complete set of data for step 𝑛 and seek the displacements and stresses at step 𝑛+1. We

first compute an incremental deformation gradient,

𝑭 = 𝜕𝑥𝑛+1

𝜕𝑥𝑛
.

With 𝑭 , we next compute a strain increment that represents the rotation-free deformation from the con-

figuration at 𝑛 to the configuration at 𝑛 + 1. Following [1], we seek the stretching rate 𝑫:

𝑫 = 1
Δ𝑡

log(𝑼̂ )

= 1
Δ𝑡

log
(
sqrt

(
𝑭

𝑇
𝑭
))

= 1
Δ𝑡

log
(
sqrt

(
𝑪̂
))

.

Here, 𝑼̂ is the incremental stretch tensor, and 𝑪̂ is the incremental Green deformation tensor. Through a

Taylor series expansion, this can be determined in a straightforward, efficient manner. 𝑫 is passed to the

constitutive model as an input for computing 𝝈 at 𝑛 + 1.

The next step is computing the incremental rotation, 𝑹̂ where 𝑭 = 𝑹̂𝑼̂ . Like for 𝑫, an efficient algo-

rithm exists for computing 𝑹̂. It is also possible to compute these quantities using an eigenvalue/eigenvector

routine.

With 𝝈 and 𝑹̂, we rotate the stress to the current configuration.

6.1 Temperature-dependent thermal expansion

Both the base metal and the liner in RPVs have temperature-dependent elastic properties and thermal expan-

sion coefficients. The thermal expansion coefficient can be specified as an instantaneous thermal expansion

coefficient, which defines the thermal strain increment under an infinitesimal change in the temperature. Us-

ing the notation of [3], for an isotropic material, this instantaneous thermal expansion coefficient at a given

temperature, 𝑇 is referred to as 𝛼(𝑇 ), and the instantaneous thermal strain, 𝜖𝑡ℎ is defined as:

d𝜖𝑡ℎ = 𝛼(𝑇 )d𝑇 .

Alternatively, the thermal expansion can be expressed as a mean coefficient of thermal expansion, 𝛼̄(𝑇 )
at a given temperature relative to the strain at a reference temperature, 𝑇𝑟𝑒𝑓 :

𝛼̄(𝑇 ) =
𝐿(𝑇 ) − 𝐿(𝑇𝑟𝑒𝑓 )

𝐿(𝑇𝑟𝑒𝑓 )(𝑇 − 𝑇𝑟𝑒𝑓 )

34



Because mean thermal expansion can be readily measured experimentally, it is common to express thermal

expansion for materials in this manner, as is the case for RPV materials.

Figure 3: Instantaneous and mean coefficients of thermal expansion

To permit the use of data in its most available form and facilitate comparisons with other codes, Grizzly

allows temperature-dependent thermal expansion data to be provided in either format. If the data is provided

in the mean form, a reference temperature must be specified, and it does not need to coincide with the stress-

free temperature. Indeed, it is often assumed that the thermal strain in the nuclear reactor components is zero

at the operating temperature, and this can be achieved in Grizzly by assigning the operating temperature as the

stress-free temperature. The method outlined in [3] is employed to calculate the incremental thermal strain

when the reference and stress-free temperatures differ. Regression tests have been developed to demonstrate

that these two methods produce the same results for equivalent mean and instantaneous thermal expansion

functions, including usage with fracture integrals.

6.2 Kernels

6.2.1 SolidMechanics

The SolidMechanics block specifies inputs for the divergence of stress as part of the equations of solid

mechanics. The divergence of stress is a Kernel in MOOSE nomenclature. The SolidMechanics block

informs MOOSE of the divergence kernels but is not placed inside the Kernels block in the input file.

[SolidMechanics]

[./solidmechanics]

disp_x = <variable>

disp_y = <variable>

disp_z = <variable>

disp_r = <variable>

temp = <variable>

[../]

[]

35



disp_x Variable name for displacement variable in x

direction. Typically disp_x.

disp_y Variable name for displacement variable in y

direction. Typically disp_y.

disp_z Variable name for displacement variable in z

direction. Typically disp_z for 3D and disp_y for

axisymmetric models.

disp_r Variable name for displacement variable in radial

direction for axisymmetric or spherically

symmetric cases. Typically disp_x.

temp Variable name for temperature variable. Necessary

for thermal expansion. Typically temp.

6.2.2 Gravity

Gravity may be applied to the model with this kernel. The required density is computed and provided inter-

nally given inputs in the Materials block.

[./gravity]

type = Gravity

variable = <variable>

value = <real> (0)

[../]

type Gravity

variable Required. Variable name corresponding to the

displacement direction in which the gravity load

should be applied.

value Acceleration of gravity. Typically -9.81 (m/s2).

6.3 AuxKernels

6.3.1 MaterialTensorAux

The MaterialTensorAux AuxKernel is used to output quantities related to second-order tensors used as

material properties. Stress and strain are common examples of these tensors. The AuxKernel allows output

of specific tensor entries or quantities computed from the entire tensor. Typically, the AuxVariable computed

by MaterialTensorAux will be an element-level, constant variable. By default, the computed value is a

volume-averaged quantity over the element.

[./materialtensoraux]

type = MaterialTensorAux

tensor = <material property tensor>

variable = <variable>

index = <integer>

quantity = <string>

point1 = <vector> (0, 0, 0)

36



point2 = <vector> (0, 1, 0)

direction = <vector>

qp_select = <integer> (0, 1, ..., n)

[../]

type MaterialTensorAux

tensor Required. Name of second-order tensor material property.

A typical second-order tensor material property is stress.

variable Required. Name of AuxVariable that will hold result.

index Index into tensor, from 0 to 5 (xx, yy, zz, xy, yz, zx). Either

index or quantity must be specified.

quantity One of VonMises, PlasticStrainMag, Hydrostatic,

Direction, Hoop, Radial, Axial, MaxPrincipal,

MedPrincipal, MinPrincipal, FirstInvariant,

SecondInvariant, ThirdInvariant, TriAxiality, or

VolumetricStrain. Either index or quantity must be

specified.

point1 Start point for axis used to calculate some material tensor

quantities.

point2 End point for axis used to calculate some material tensor

quantities.

direction Direction vector used to calculate some material tensor

quantities.

qp_select Output the value at the specified integration point number

rather than volume averaging.

6.4 Materials

6.4.1 Elastic

The Elastic model is a simple hypo-elastic model.

[./elastic]

type = Elastic

disp_x = <string>

disp_y = <string>

disp_z = <string>

disp_r = <string>

temp = <string>

youngs_modulus = <real>

youngs_modulus_function = <string>

poissons_ratio = <real>

poissons_ratio_function = <string>

thermal_expansion = <real> (0)

thermal_expansion_function = <string>

stress_free_temperature = <real>

thermal_expansion_function_type = <string> (Mean)

37



thermal_expansion_function = <string>

thermal_expansion_reference_temperature = <real>

block = <string list>

[../]

type Elastic

disp_x Variable name for displacement variable in x

direction. Typically disp_x.

disp_y Variable name for displacement variable in y

direction. Typically disp_y.

disp_z Variable name for displacement variable in z

direction. Typically disp_z for 3D and disp_y for

axisymmetric models.

disp_r Variable name for displacement variable in radial

direction for axisymmetric or spherically

symmetric cases. Typically disp_x.

temp Name of temperature variable. Typically temp.

youngs_modulus Young’s modulus.

youngs_modulus_function Function describing Young’s modulus as a function

of temperature.

poissons_ratio Poisson’s ratio.

poissons_ratio_function Function describing Poisson’s ratio as a function of

temperature.

thermal_expansion Coefficient of thermal expansion.

stress_free_temperature The stress-free temperature. If not specified, the

initial temperature is used.

thermal_expansion_function_type Type of thermal expansion data. Options are Mean

or Instantaneous.

thermal_expansion_function Function describing thermal expansion as a

function of temperature.

thermal_expansion_reference_temperature Reference temperature for mean thermal expansion

function.

block List of blocks this material applies to.

6.5 Density

The Density model creates a material property named ‘density’. If coupled to displacement variables, the

model adjusts density based on deformation.

[./density]

type = Density

disp_x = <string>

disp_y = <string>

disp_z = <string>

disp_r = <string>

density = <real>

[../]

38



type Density

disp_x Variable name for displacement variable in x direction.

Typically disp_x.

disp_y Variable name for displacement variable in y direction.

Typically disp_y.

disp_z Variable name for displacement variable in z direction.

Typically disp_z for 3D and disp_y for axisymmetric

models.

disp_r Variable name for displacement variable in radial direction

for axisymmetric or spherically symmetric cases. Typically

disp_x.

density Required. Density.

6.6 VectorPostprocessors

6.6.1 LineMaterialSymmTensorSampler

LineMaterialSymmTensorSampler samples stress tensor quantities along a user-specified line.

[./linematerialsymmtensorsampler]

type = LineMaterialSymmTensorSampler

start = <vector>

end = <vector>

property = <string>

quantity = <string>

index = <integer>

point1 = <vector> (0, 0, 0)

point2 = <vector> (0, 1, 0)

direction = <vector>

sort_by = <x or y or z or id>

block = <string list>

[../]

type LineMaterialSymmTensorSampler

start Required The beginning of the line.

end Required The ending of the line.

property Required Name of second-order tensor material property. A

typical second-order tensor material property is stress.

index Index into tensor, from 0 to 5 (xx, yy, zz, xy, yz, zx). Either

index or quantity must be specified.

quantity One of VonMises, PlasticStrainMag, Hydrostatic,

Direction, Hoop, Radial, Axial, MaxPrincipal,

MedPrincipal, MinPrincipal, FirstInvariant,

SecondInvariant, ThirdInvariant, TriAxiality, or

VolumetricStrain. Either index or quantity must be

specified.

39



direction Direction vector used to calculate some material tensor

quantities.

point1 Start point for axis used to calculate some material tensor

quantities.

point2 End point for axis used to calculate some material tensor

quantities.

sort_by Required What to sort the samples by.

block List of blocks this vectorpostprocessor applies to.

6.7 BCs

6.7.1 Pressure

The Pressure boundary condition uses two levels of nesting within the BCs block. This allows the pressure

to be applied properly in all coordinate directions although it is specified one time only.

[./Pressure]

[./pressure]

boundary = <string list>

factor = <real> (1)

function = <string>

[../]

[../]

boundary Required. List of boundary names or ids where this

boundary condition will apply.

factor Magnitude of pressure to be applied. If function is also

given, factor is multiplied by the output of the function and

then applied as the pressure.

function Function that will give the value to be applied by this

boundary condition.

40



7 Submodeling

Grizzly includes capabilities for solution transfer that facilitate submodeling. Typically the global model is

the whole or part of a vessel and the submodel is a smaller region containing a flaw. Solutions stored in an Ex-

odusII or XDA file can be used as input to a submodel using a SolutionUserObject. The mesh of the sub-

model must fit inside the physical domain of the global model. Advanced options of SolutionUserObject

allow users to scale, translate and rotate the submodel. A solution function is required to interpolate in time

and space the data from SolutionUserObject. The solution function to use depends on the type of solution

mapping needed.

7.1 UserObjects

7.1.1 SolutionUserObject

A solution user object reads a variable from a mesh in one simulation to another. To use a SolutionUserObject

three additional parameters are required, an AuxVariable , a Function and an AuxKernel. The AuxVariable

represents the variable to be read by the solution user object. The SolutionUserObject is set up to read

the old output file. A SolutionFunction is required to interpolate in time and space the data from the

SolutionUserObject. Finally, the FunctionAux is required that will query the function and write the

value into the AuxVariable. An example of what additions are required to the input file is shown below:

[AuxVariables]

[./temp]

[../]

[]

[Functions]

[./interpolated_temp]

type = SolutionFunction

from_variable = ’temp’

solution = read_thermo_solution

[../]

[]

[UserObjects]

[./read_thermo_solution]

type = SolutionUserObject

mesh = ’temp_from_another_simulation.e’

execute_on = ’residual’

nodal_variables = ’temp’

[../]

[]

[AuxKernels]

[./interp_temp]

type = FunctionAux

variable = ’temp’

function = ’interpolated_temp’

[../]

41



[]

Note that in the SolutionUserObject subblock that the mesh parameter is required.

7.2 Functions

7.2.1 SolutionFunction

If the global model and submodel have the same dimensionality, the SolutionFunction can be used as a

forcing function for a boundary condition. The SolutionFunction uses a SolutionUserObject to read

the data from a results file from a previous run. An example of how this is achieved in the input file is shown

below:

[UserObjects]

[./soln]

type = SolutionUserObject

mesh = ’global_model_out.e’

system_variables = ’disp_x disp_y’

timestep = 1

[../]

[]

[Functions]

[./bc_func_x]

type = SolutionFunction

solution = soln

from_variable = disp_x

[../]

[]

[BCs]

[./x_soln_bc]

type = FunctionDirichletBC

variable = disp_x

boundary = ’1 2 3 4 5 6’

function = bc_func_x

[../]

[]

mesh Required. The name of the mesh file containing the global

model solution. Must be ExodusII or XDA file.

system_variables The name of the nodal and elemental variables from the file

you want to use for values.

timestep Index of the single timestep used or “LATEST” for the last

timestep (ExodusII only). If not supplied, time interpolation

will occur.

solution Required. The SolutionUserObject to extract data from.

from_variable The name of the variable in the file that is to be extracted.

42



7.3 Axisymmetric2D3DSolutionFunction

If a two-dimensional axisymmetric model is used as the global model, the solution can be mapped onto a two-

or three-dimensional submodel using Axisymmetric2D3DSolutionFunction. This function then replaces

SolutionFunction in the example above.

[Functions]

[./bc_func_x]

type = Axisymmetric2D3DSolutionFunction

solution = soln

3d_axis_point1 = ’0.0 0.0 0.0’

3d_axis_point2 = ’0.0 0.0 1.0’

from_variables = ’disp_x disp_y’

component = 0

axial_dimension_ratio = 200.0

[../]

[]

solution Required. The SolutionUserObject to extract data from.

2d_axis_point1 Start point for axis of symmetry for the 2d model.

2d_axis_point2 End point for axis of symmetry for the 2d model.

3d_axis_point1 Start point for axis of symmetry for the 3d model.

3d_axis_point2 End point for axis of symmetry for the 3d model.

from_variables The name of the variables in the file that are to be extracted,

in x, y order if they are vector components.

component Component of the variable to be computed if it is a vector.

axial_dimension_ratio Ratio of the axial dimension in the 3d model to that in the 2d

model. Optionally permits the 3d model to be larger than the

2d model in that dimension, and scales vector solutions in

that direction by this factor.

43



8 Theory and Commands for Reactor Pressure Vessel Analysis

8.1 Fluence Map

Grizzly includes a capability to apply a neutron fluence map to the interior surface of the vessel. Inside the

vessel wall, the fluence is calculated using the equation accepted by the NRC for fast neutron attenuation

in RPV steel [4]. The fluence 𝑓 at a given distance 𝑥 (in inches) from the inner surface is expressed as a

function of that distance and the fluence at the inner surface, 𝑓𝑖:

𝑓 (𝑥) = 𝑓𝑖 exp(−0.24 ∗ 𝑥).

The calculated fluence can be used in the EONY model presented below to calculate the transition-

temperature shift for every location in the vessel, which in turn can provide the level of embrittlement in the

fracture toughness given by the master curve model.

Figure 4: Attenuation through the thickness of the wall computed using FluenceFunction and a map of

the fluence on the inner surface of the RPV.

The fluence is computed in the function FluenceFunction and can be output as an AuxVariable.

FluenceFunction requires two data files describing the axial and azimuthal variation, respectively, of the

fluence at the interior surface of the vessel. The second column in the data files gives the variation in fluence.

In the file describing the axial variation of fluence, the first column is the height (in inches). The parameter

axis1 determines where the axial fluence profile will start and the vector from axis1 to axis2 defines the

axial direction. In the file describing the azimuthal variation, the first column is the angle within a 90 degree

sector of the RPV. The angle is defined relative to the position determined by the parameter azimuth0, which

gives the position of the azimuthal origin in relation to the axial axis defined by the points axis1 and axis2.

The parameter inner_radius gives the radial distance from the center of the RPV at which the fluence

map should be applied. At radial distances larger than inner_radius, the attenuated fluence is computed

44



using the formula presented above. In the end, the fluence is a product of the axial and azimuthal variation,

respectively, the attenuation, and the scale_factor provided in the input block:

𝜙 = (axial value) × (azimuthal value) × (scale factor) × (attenuation).

[AuxVariables]

[./fluence]

order = FIRST

family = LAGRANGE

[../]

[]

[Functions]

[./flu_fun]

type = FluenceFunction

axial_file = <string>

azimuthal_file = <string>

axis1 = <vector>

axis2 = <vector>

azimuth0 = <vector>

inner_radius = <real>

scale_factor = <real>

[../]

[]

[AuxKernels]

[./fluence]

type = FunctionAux

function = flu_fun

variable = fluence

execute_on = initial

[../]

[]

axial_file Required. File with the fluence vs axial position

azimuthal_file Required. File with the fluence vs azimuthal position

axis1 Required. First point on axis of rotation

axis2 Required. Second point on axis of rotation

azimuth0 Required. Point at azimuthal origin

inner_radius Required. Inner radius of vessel (in meters)

scale_factor Scale factor to be applied to the fluence

8.2 EONY Embrittlement Model

The EONY model by Eason, Odette, Nanstad and Yamamoto [5] is an empirically calibrated model based

on U.S. nuclear reactor surveillance data for the embrittlement of RPV steel. It has been accepted for regu-

lation and is incorporated in the U.S. NRC Regulations on Pressurized Thermal Shock, 10CFR50.61a. The

45



model predicts the transition-temperature shift in a RPV steel Charpy V-notch test as a function of fast neu-

tron fluence, while considering the effects of flux, irradiation temperature, and chemical composition of the

material. In this model, TTS is calculated as a function of two terms due to the matrix features (MF) and

copper-rich precipitates (CRP):

TTS = MF term + CRP term

The MF term is calculated as

MF term = 𝐴(1 − 0.001718𝑇𝑖)(1 + 6.13𝑃𝑀𝑛2.47)
√
𝜙𝑡𝑒

where

𝐴 =
⎧⎪⎨⎪⎩
1.140 × 10−7 for forgings

1.561 × 10−7 for plates

1.417 × 10−7 for welds,

𝑇𝑖 is the irradiation temperature (F), 𝑃 is the weight % phosphorous content, 𝑀𝑛 is the weight % man-

ganese content, and 𝜙𝑡𝑒 is the fast neutron fluence (n∕cm2). The CRP term is calculated as:

CRP term = 𝐵(1 + 3.77𝑁𝑖1.191)𝑓 (𝐶𝑢𝑒, 𝑃 )𝑔(𝐶𝑢𝑒,𝑁𝑖, 𝜙𝑡𝑒)

where

𝐵 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

102.3 for forgings

102.5 for plates in non-CE mfg. vessels

135.2 for plates in CE mfg. vessels

155.0 for welds

128.2 for SRM plates,

𝐶𝑢𝑒 =

{
0 for 𝐶𝑢 ≤ 0.072 wt%
min(𝐶𝑢,max(𝐶𝑢𝑒)) for 𝐶𝑢 > 0.072 wt%,

𝐶𝑢𝑒 is the weight % copper content, 𝑁𝑖 is the weight % nickel content,

max(𝐶𝑢𝑒) =

{
0.243 for typical (𝑁𝑖 ≤ 0.5) Linde 80 welds

0.301 for all other materials,

𝑓 (𝐶𝑢𝑒, 𝑃 ) =
⎧⎪⎨⎪⎩
0 for 𝐶𝑢 ≤ 0.072
(𝐶𝑢𝑒 − 0.072)0.668 for 𝐶𝑢 > 0.072 and 𝑃 ≤ 0.008
(𝐶𝑢𝑒 − 0.072 + 1.359(𝑃 − 0.008))0.668 for 𝐶𝑢 > 0.072 and 𝑃 > 0.008

and

𝑔(𝐶𝑢𝑒,𝑁𝑖, 𝜙𝑡𝑒) =
1
2
+ 1

2
tanh

( log10(𝜙𝑡𝑒) + 1.139𝐶𝑢𝑒 − 0.448𝑁𝑖 − 18.120
0.629

)
.

Because it is calibrated to experimental data, this model provides reasonable predictions of the effect

of embrittlement within the range of the data used to calibrate it. As acknowledged by its authors, it is

46



only applicable for limited fluence levels. The authors are working to provide an authoritative limit for its

applicability, but provide a preliminary suggestion that it be limited to fluences of 5×1019 n∕cm2. Ranges and

mean values of all the independent variables in the calibration database are provided in table 2 of reference

[5].

The TTS predicted by the EONY model is calculated using the AuxKernel EONYAux, which outputs it

as a material property field in the model. Typically the fluence variable is calculated in FluenceFunction

and is a function of location in the vessel.

[./EONYAux]

type = EONYAux

variable = <string>

fluence = <string>

block = <string list>

A = <real>

B = <real>

Cu = <real>

Mn = <real>

Ni = <real>

P = <real>

irradiation_time = <real>

irradiation_temp = <real>

[../]

variable Required. Name of AuxVariable that will hold transition

temperature shift result.

fluence Required. Variable name for fluence variable.

block Required. List of blocks.

A Required. A parameter.

B Required. B parameter.

Cu Required. Weight percentage of Cu.

Mn Required. Weight percentage of Mn.

Ni Required. Weight percentage of Ni.

P Required. Weight percentage of P.

irradiation_time Required. Irradiation time.

irradiation_temp Required. Irradiation temperature (in degrees Fahrenheit).

8.3 Fracture Toughness From Master Curve

The master curve approach is typically used to obtain the DBTT in steels [6], [7]. It is based on fitting the

experimentally obtained scattered fracture toughness data with the modified Weibull distribution function

𝑃𝑓 = 1 − exp

[
−
(
𝐾𝐽 − 20
𝐾0 − 20

)4
]

𝐾𝐽𝐶 (𝑇 ) = 𝐴 + 𝐵 exp
[
𝐶
(
𝑇 − 𝑇0

)]
MPa

√
𝑚

where, 𝑃𝑓 , 𝐾0, and 𝑇0 are the cumulative failure probability, 63𝑟𝑑 percentile fracture toughness value

47



and the DBTT, respectively. The temperature that provides a median fracture toughness of 100 MPa
√
𝑚 is

considered as the DBTT. However, the master curve equation is based on small scale yielding and neglects

the influence of ductile damage. Hence, the applicability of the master curve approach is limited near the

transition region and lower failure probabilities.

The temperature dependent fracture toughness 𝐾𝐽𝐶 is computed using the AuxKernel K1cAux and is

output as an AuxVariable in the model.

[./K1cAux_1]

type = K1cAux

variable = <string>

temperature = <string>

transition_temperature_shift = <string>

A = <real>

B = <real>

C = <real>

T0 = <real>

Kmin = <real> (20)

confidence_level = <real> (0.632)

[../]

type K1cAux

variable Required. Name of AuxVariable that will hold result.

temperature Required. Variable name for temperature variable. Typically

temp.

transition_temperature_shift Required. Variable name for transition temperature shift variable

(given in degrees F).

A Required. Parameter in the master curve function

B Required. Parameter in the master curve function

C Required. Parameter in the master curve function

T0 Required. Ductile-to-brittle transition temperature, defined as the

temperature for K1C=100 MPa m0.5 (in K).

confidence_level The cumulative probability of fracture 𝑃𝑓 (0 < 𝑃𝑓 ≤ 1).

Kmin Lower bound fracture toughness (in MPa m0.5).

In models with a crack, 𝐾𝐽𝐶 can be output along the crack front using the parameter output_variables

= 'k1c_1 k1c_50' within the [DomainIntegral] block.

8.4 Fracture Domain Integrals

8.4.1 𝐽 -integral

Linear elastic fracture mechanics (LEFM) is widely accepted as an appropriate methodology to assess the

susceptibility of a reactor pressure vessel (RPV) to fracture during a loading event [8]. LEFM is based on

the assumption that the material ahead of a crack front behaves in a linearly elastic manner, resulting in a

singularity in the stress field ahead of the crack tip. The mode-I stress intensity factor, 𝐾𝐼 is a measure of

the degree of the singularity of that field on a crack under mode-𝐼 (normal to crack plane) loading.

A finite element calculation in which a crack is represented in the mesh geometry can be used to calculate

the displacement and stress fields in the vicinity of the crack. One straightforward way to evaluate the stress

48



intensity from a finite element solution is through the 𝐽 -integral [9], which provides the mechanical energy

release rate. If the crack is subjected to pure mode-𝐼 loading, 𝐾𝐼 can be calculated from 𝐽 using the following

relationship:

𝐽 =

{
1−𝜈2
𝐸

𝐾2
𝐼

plane strain
1
𝐸
𝐾2

𝐼
plane stress

where 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio. For assessing flaws in a RPV, plane strain

conditions are assumed.

The 𝐽 -integral was originally formulated as an integral over a closed curve around the crack tip in 2D.

It can alternatively be expressed as an integral over a surface in 2D or a volume in 3D using the method of

[10], which is more convenient for implementation within a finite element code.

Following the terminology of [11], the integrated value of the 𝐽 -integral over a segment of a crack front,

represented as 𝐽 , can be expressed as a summation of four terms:

𝐽 = 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4

where the individual terms are defined as:

𝐽1 = ∫𝑉0

(
𝑃𝑗𝑖

𝜕𝑢𝑖

𝜕𝑋𝑘

𝜕𝑞𝑘

𝜕𝑋𝑗

−𝑊
𝜕𝑞𝑘

𝜕𝑋𝑘

)
𝑑𝑉0

𝐽2 = −∫𝑉0

(
𝜕𝑊

𝜕𝑋𝑘

− 𝑃𝑗𝑖

𝜕2𝑢𝑖
𝜕𝑋𝑗𝜕𝑋𝑘

)
𝑞𝑘𝑑𝑉0

𝐽3 = −∫𝑉0

(
𝑇

𝜕𝑞𝑘

𝜕𝑋𝑘

− 𝜌
𝜕2𝑢𝑖

𝜕𝑡2
𝜕𝑢𝑖

𝜕𝑋𝑘

𝑞𝑘 + 𝜌
𝜕𝑢𝑖

𝜕𝑡

𝜕2𝑢𝑖
𝜕𝑡𝜕𝑋𝑘

𝑞𝑘

)
𝑑𝑉0

𝐽4 = −∫𝐴0

𝑡𝑖
𝜕𝑢𝑖

𝜕𝑋𝑘

𝑞𝑘𝑑𝐴0

In these equations, 𝑉0 is the undeformed volume, 𝐴0 is the combined area of the two crack faces, 𝑃𝑗𝑖 is

the 1st Piola-Kirchoff stress tensor, 𝑢𝑖 is the displacement vector, 𝑋𝑘 is the undeformed coordinate vector,

𝑊 is the stress-work density, 𝑇 is the kinetic energy density, 𝑡 is time, 𝜌 is the material density, and 𝑡𝑖 is the

vector of tractions applied to the crack face.

The vector field 𝑞𝑘 is a vector field that is oriented in the crack normal direction. This field has a mag-

nitude of 1 between the crack tip and the inner radius of the ring over which the integral is to be performed,

and drops from 1 to 0 between the inner and outer radius of that ring, and has a value of 0 elsewhere. In 3D,

𝐽 is evaluated by calculating the integral 𝐽 over a segment of the crack front. A separate 𝑞 field is formed

for each segment along the crack front, and for each ring over which the integral is to be evaluated. Each of

those 𝑞 fields is multiplied by a weighting function that varies from a value of 0 at the ends to a finite value

in the middle of the segment. The value of 𝐽 at each point on the curve is evaluated by dividing 𝐽 by the

integrated value of the weighting function over the segment containing that point.

The first term in 𝐽 , 𝐽1, represents the effects of strain energy in homogeneous material in the absence of

thermal strains or inertial effects. The second term, 𝐽2, accounts for the effects of material inhomogenieties

and gradients of thermal strain. For small strains, this term can be represented as:

𝐽2 = ∫𝑉0

𝜎𝑖𝑗

[
𝛼𝑖𝑗

𝜕𝜃̄

𝜕𝑋𝑘

+
𝜕𝛼𝑖𝑗

𝜕𝑋𝑘

𝜃̄

]
𝑞𝑘𝑑𝑉0

49



where 𝜎𝑖𝑗 , 𝛼𝑖𝑗 and 𝜃̄ are the Cauchy stress, thermal conductivity, and difference between the current

temperature and a reference temperature, respectively.

The third term in 𝐽 , 𝐽3, accounts for inertial effects in a dynamic analysis, and the fourth term, 𝐽4
accounts for the effects of surface tractions on the crack face.

The implementation of the 𝐽 -integral calculator in Grizzly can be used for arbitrary curved 3D crack

fronts, and includes the 𝐽1 and 𝐽2 terms to account for the effects of quasistatic mechanically and thermally

induced strains. The last two terms have not been implemented. Because the RPV analyses are all quasistatic,

there are no inertial effects, so 𝐽3 = 0. 𝐽4 would be nonzero for surface-breaking cracks because of the effects

of the fluid pressure, but its contribution is expected to be negligible relative to that of the first two terms.

Pointwise values 𝐽 (𝑠) are calculated from the 𝐽 -integral over a crack front segment 𝐽 using the expression

𝐽 (𝑠) = 𝐽 (𝑠)
∫ 𝑞(𝑠)𝑑𝑠

.

To use the 𝐽 -integral capability in Grizzly, a user specifies a set of nodes along the crack front, infor-

mation used to calculate the crack normal directions along the crack front, and the inner and outer radii of

the set of rings over which the integral is to be performed. Grizzly automatically defines the full set of 𝑞

functions for each point along the crack front, and outputs either the value of 𝐽 or 𝐾𝐼 at each of those points.

In addition, the user can ask for any other variable in the model to be output at points corresponding to those

where 𝐽 is evaluated along the crack front.

8.4.2 Interaction integral

The interaction integral method is based on the 𝐽 -integral and makes it possible to evaluate mixed-mode

stress intensity factors 𝐾𝐼 , 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 , as well as the T-stress, in the vicinity of three-dimensional cracks.

The formulation relies on superimposing Williams’ solution for stress and displacement around a crack (in

this context called ‘auxiliary fields’) and the computed finite element stress and displacement fields (called

‘actual fields’). The total superimposed 𝐽 can be separated into three parts: the 𝐽 of the actual fields, the

𝐽 of the auxiliary fields, and an interaction part containing the terms with both actual and auxiliary field

quantities. The last part is called the interaction integral and for a fairly straight crack without body forces,

thermal loading or crack face tractions, the interaction integral over a crack front segment can be written

[12]:

𝐼(𝑠) = ∫𝑉

[
𝜎𝑖𝑗𝑢

aux
𝑗,1 + 𝜎aux

𝑖𝑗
𝑢𝑗,1 − 𝜎𝑗𝑘𝜖

aux
𝑗𝑘

𝛿1𝑖

]
𝑞,𝑖 d𝑉

where 𝜎 is the stress, 𝑢 is the displacement, and 𝑞 is identical to the 𝑞-functions used for 𝐽 -integrals.

This is the formulation of the interaction integral used currently in Grizzly. It is therefore not recommended

to use the interaction integral method in analyses where thermal loading, body forces or crack face tractions

are important, as Grizzly does not include the necessary correction terms in the integral.

In the same way as for the 𝐽 -integral, the pointwise value 𝐼(𝑠) at location 𝑠 is obtained from 𝐼(𝑠) using:

𝐼(𝑠) = 𝐼(𝑠)
∫ 𝑞(𝑠)d𝑠

.

Next, we relate the interaction integral 𝐼(𝑠) to stress intensity factors. By writing 𝐽𝑆 , with actual and

auxiliary fields superimposed, in terms of the mixed-mode stress intensity factors

𝐽𝑆(𝑠) = 1 − 𝜈2

𝐸

[(
𝐾𝐼 +𝐾aux

𝐼

)2 + (
𝐾𝐼𝐼 +𝐾aux

𝐼𝐼

)2] + 1 + 𝜈

𝐸

(
𝐾𝐼𝐼𝐼 +𝐾aux

𝐼𝐼𝐼

)2 = 𝐽 (𝑠) + 𝐽aux(𝑠) + 𝐼(𝑠)

50



the interaction integral part evaluates to

𝐼(𝑠) = 1 − 𝜈2

𝐸

(
2𝐾𝐼𝐾

aux
𝐼

+ 2𝐾𝐼𝐼𝐾
aux
𝐼𝐼

)
+ 1 + 𝜈

𝐸

(
𝐾𝐼𝐼𝐼𝐾

aux
𝐼𝐼𝐼

)
To obtain individual stress intensity factors, the interaction integral is evaluated with different auxiliary

fields. For instance, by choosing 𝐾aux
𝐼

= 1.0 and 𝐾aux
𝐼𝐼

= 𝐾aux
𝐼𝐼𝐼

= 0 and computing the volume integral

𝐼(𝑠) over the actual and auxiliary fields, 𝐾𝐼 can be solved for.

If all three interaction integral stress intensity factors are computed, Grizzly includes an option to output

an equivalent stress intensity factor computed by:

𝐾𝑒𝑞 =

√
𝐾2

𝐼
+𝐾2

𝐼𝐼
+

𝐾2
𝐼𝐼𝐼

1 − 𝜈
.

The 𝑇 -stress is the first second-order parameter in Williams’ expansion of stress at a crack tip and is a

constant stress parallel to the crack [13], [14]. Contrary to 𝐽 , 𝑇 -stress depends on geometry and size and

can give a more accurate description of the stresses and strains around a crack tip than 𝐽 alone. The 𝑇 -stress

characterizes the crack-tip constraint and a negative 𝑇 -stress is associated with loss of constraint and a higher

fracture toughness than would be predicted from a one-parameter 𝐽 description of the load on the crack. 𝑇 -

stresses can be calculated with the interaction integral methodology using appropriate auxiliary fields [15].

The current implementation of the 𝑇 -stress computation is valid for two-dimensional and three-dimensional

cracks under Mode I loading.

8.4.3 Usage

To use the 𝐽 -integral or interaction integral capability, a DomainIntegral block is needed in the input file.

The domain integrals operate on a set of crack front nodes (in standard FEM) or points (in XFEM). In the

former, the crack front should be defined as a nodeset in the mesh file and is supplied in the parameter

boundary.

[DomainIntegral]

integrals = <string list>

boundary = <string list>

crack_direction_method = <string>

crack_direction_vector = <vector>

crack_mouth_boundary = <string list>

2d = <bool> (false)

axis_2d = <0, 1, or 2 for x, y, or z>

radius_inner = <real list>

radius_outer = <real list>

symmetry_plane = <0, 1, or 2 for x, y, or z>

output_variable = <string list>

convert_J_to_K = <bool> (false)

position_type = <Distance or Angle> (Distance)

q_function_type = <Geometry or Topology> (Geometry)

[]

integrals Required. List of quantities to compute. Options are JIntegral,

InteractionIntegralKI, InteractionIntegralKII,

InteractionIntegralKIII, and InteractionIntegralT.

51



boundary The boundary id(s) for the crack front node nodeset. Must use

either this or crack_front_points.

crack_front_points Set of points to define a crack front. Must use either this or

boundary.

crack_direction_method Required. Method to determine direction of crack propagation.

One of CrackDirectionVector, CrackMouth, or CurvedCrackFront.

crack_direction_vector Direction of crack propagation. Required if

crack_direction_method is CrackDirectionVector.

crack_mouth_boundary Boundaries whose average coordinate defines the crack mouth.

Required if crack_direction_method is CrackMouth.

crack_end_direction_method Method to determine direction of crack propagation at ends of

crack. One of NoSpecialTreatment and CrackDirectionVector.

crack_direction_vector_end_1 Direction of crack propagation for the node at end 1 of the crack.

Required if crack_end_direction_method is

CrackDirectionVector.

crack_direction_vector_end_2 Direction of crack propagation for the node at end 2 of the crack.

Required if crack_end_direction_method is

CrackDirectionVector.

intersecting_boundary Boundaries intersected by ends of crack.

q_function_type The method used to define the integration domain. One of

Geometry or Topology.

radius_inner Inner radii for volume integral domains. Used if

q_function_type is Geometry.

radius_outer Outer radii for volume integral domains. Used if

q_function_type is Geometry.

ring_first The first ring of elements for volume integral domain. Used if

q_function_type is Topology.

ring_last The last ring of elements for volume integral domain. Used if

q_function_type is Topology.

2d Treat body as two-dimensional.

axis_2d Out of plane axis for models treated as two-dimensional (0=x,

1=y, 2=z).

symmetry_plane Account for a symmetry plane passing through the plane of the

crack, normal to the specified axis (0=x, 1=y, 2=z)

output_variable Variable values to be reported along the crack front.

convert_J_to_K Convert 𝐽 -integral to stress intensity factor K.

position_type The method used to calculate position along crack front. One of

Angle or Distance. If Angle, must have a

crack_mouth_boundary.

The following parameters apply only to the computation of interaction integrals:

poissons_ratio Required. Poisson’s ratio.

youngs_modulus Required. Young’s modulus.

block Required. Block ids where InteractionIntegralAuxFields is

defined.

52



equivalent_k Calculate an equivalent stress intensity factor 𝐾𝑒𝑞 from 𝐾𝐼 , 𝐾𝐼𝐼

and 𝐾𝐼𝐼𝐼 , assuming self-similar crack growth.

disp_x Required. Variable name for displacement variable in x direction.

Typically disp_x.

disp_y Required. Variable name for displacement variable in y direction.

Typically disp_y.

disp_z Required. Variable name for displacement variable in z direction.

Typically disp_z.

The parameter 2d determines if the crack front will be treated as two- or three-dimensional. If the crack

is treated as three-dimensional, domain integral results will be output for each node or point along the crack

front. If the crack is treated as two-dimensional, whether the mesh is two- or three-dimensional, it is assumed

to be a straight crack and only one value for the entire crack front is output. In this case, the crack front

nodes or points should form a line parallel to the coordinate axis given in axis_2d. Note that if the crack

is treated as three-dimensional the domain integral results will be output as comma separated files using

VectorPostprocessors. To turn on this output, csv must be set to true in the Outputs block.

The integration domain around the crack tip is determined by the q_function_type and a combination

of either radius_inner and radius_outer or ring_first and ring_last. The default method to create

the 𝑞 function is by defining inner and outer radii relative to the crack tip of the integration domains. This is

the geometry-based method, which works for sharp and blunt crack tips. The mesh topology-based 𝑞 function

type creates rings of elements around the crack tip and currently only works for sharp crack tips.

At free surfaces or symmetry planes, the automatic computation of the direction of crack extension

can be prone to errors. If crack_end_direction_method is set to CrackDirectionVector, the crack di-

rections at the two crack ends are provided using the parameters crack_direction_vector_end_1 and

crack_direction_vector_end_2. If there are spurious results at the node next to an end node, this can

be helped by supplying the indices of the boundaries intersected by the end nodes as a list to the parameter

intersecting_boundary.

53



9 Demonstration RPV Analysis

Demonstration models of a PWR RPV subjected to a transient loading scenario are included in the Grizzly

code repository under the demonstration directory. These include a full 3D model of the RPV and a small

2D axisymmetric model of a slice of the RPV. Examples of transfers of results from both of these models to

a local fracture analysis of an axis-aligned flaw are also included.

9.1 Global RPV Model (2D Axisymmetric)

Because the region of the RPV that experiences the highest irradiation dose is in the beltline of the vessel, the

response of the vessel in that region is typically of the most interest. The thermo-mechanical response of that

region of the vessel can be characterized as that of an infinite cylinder. A simple 2D model of a single strip

of elements, with appropriate boundary conditions, can be used to represent this response. This provides an

accurate simulation of the response of this region of the vessel with minimal computational cost.

The 2D strip model of the RPV is in the directory demonstration/rpv_global/2d_strip. This di-

rectory includes the journal file to generate the mesh with Cubit, the mesh, and a Grizzly input file.

The Grizzly input file for this model is named 2d_strip.i.

This model reads in time histories of the heat transfer coefficient, coolant pressure, and coolant temper-

ature from files in the demonstration/rpv_global/loadhist directory.

This model has fixed displacement boundary conditions on the bottom surface of the strip in the y direc-

tion, and uses an EqualValueBoundaryConstraint block to constrain the displacement in the y direction

to be equal across the top surface of the model. This represents conditions for an infinite cylinder that is free

to expand in its axial direction, with planar sections remaining planar.

Figure 5: Mesh used for 2D axisymmetric strip RPV model.

9.2 Global RPV Model (3D)

The 3D global model of the RPV is in the directory demonstration/rpv_global/3d. This directory

includes the journal file to generate the mesh with Cubit, the mesh, and a Grizzly input file.

The Grizzly input file for this model is named 3d_rpv.i. This model is representative of geometry typical

of a PWR RPV, and is based entirely on openly-available data. It is important to note that this model does

not represent an actual RPV.

This model reads in time histories of the heat transfer coefficient, coolant pressure, and coolant temper-

ature from files in the demonstration/rpv_global/loadhist directory.

This model is quite large, and should be run in parallel.

9.3 Local Fracture Submodels

The directory demonstration/rpv_fracture_submodel contains multiple variants of submodels for local

fracture analysis of flaws. There are two versions of the geometry modeled in this directory: an axial flaw

and a circumferential flaw. The mesh directory contains the Cubit journal files and Exodus meshes for both

of these flaw orientations.

54



Figure 6: Mesh used for 3D RPV model.

The transfer_from_2d_strip directory contains input files for both of these models using the results

from the 2D strip model to drive the boundary conditions. These use Axisymmetric2D3DSolutionFunction

to map the displacement and temperature histories from the 2D strip global model.

The transfer_from_3d directory contains input files for both of these models using the results from the

2D strip model to drive the boundary conditions. These use SolutionFunction to map the displacement

and temperature histories from the 3D strip global model.

Aside from the differences in the sources of the displacement and temperature fields, these two sets of

models are identical. Both of these use DomainIntegral to compute fracture domain integrals for points

along the crack front.

As all of these submodels read data from the output of global models, the corresponding global models

must be run first before these models are run.

55



Figure 7: Mesh used for local fracture model of axial surface-breaking flaw.

56



10 References

1. M. M. Rashid, “Incremental kinematics for finite element applications”, vol. 36, pp. 3937–3956, 1993.

2. S. Key, FMA-3D Theoretical Manual, Ver 32, FMA Development, LLC, Great Falls, Montanta, 2011.

3. M. Niffenegger and K. Reichlin, “The proper use of thermal expansion coefficients in finite element

calculations”, Nuclear Engineering and Design, vol. 243, pp. 356–359, Feb. 2012.

4. U.S. Nuclear Regulatory Commission Regulatory Guide 1.99, Revision 2, Radiation Embrittlement of
Reactor Vessel Materials, U.S. NRC, 1988.

5. E. Eason, G. Odette, R. Nanstad, and T. Yamamoto, “A physically-based correlation of irradiation-

induced transition temperature shifts for RPV steels”, Journal of Nuclear Materials, vol. 433, no. 1-3,

pp. 240–254, Feb. 2013.

6. K. Wallin, “The Scatter in K𝐼𝐶 Results”, Engineering Fracture Mechanics, vol. 19, no. 6, pp. 1085–

1093, 1984.

7. Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in Transition
Range, 13th ed., ASTM, 2013.

8. T. L. Dickson, P. T. Williams, and S. Yin, Fracture Analysis of Vessels - Oak Ridge FAVOR, v09.1,
Computer Code: User’s Guide, Oak Ridge National Laboratory, Dec. 2009.

9. J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by

Notches and Cracks”, Journal of Applied Mechanics, vol. 35, no. 2, p. 379, 1968.

10. F. Z. Li, C. F. Shih, and A. Needleman, “A comparison of methods for calculating energy release rates”,

Engineering Fracture Mechanics, vol. 21, no. 2, pp. 405–421, 1985.

11. B. Healy, A. Gullerud, K. Koppenhoefer, A. Roy, S. RoyChowdhury, M. Walters, B. Bichon, K. Cochran,

A. Carlyle, J. Sobotka, M. Messner, and R. Dodds, WARP3D-Release 17.3.1, UILU-ENG-95-2012,

University of Illinois at Urbana-Champaign, 2012.

12. M. C. Walters, G. H. Paulino, and R. H. Dodds, “Interaction integral procedures for 3-D curved cracks

including surface tractions”, Engineering Fracture Mechanics, vol. 72, no. 11, pp. 1635–1663, July

2005.

13. S. Larsson and A. Carlsson, “Influence of non-singular stress terms and specimen geometry on small-

scale yielding at crack tips in elastic-plastic materials”, Journal of the Mechanics and Physics of Solids,

vol. 21, no. 4, pp. 263–277, July 1973.

14. J. Rice, “Limitations to the small scale yielding approximation for crack tip plasticity”, Journal of the
Mechanics and Physics of Solids, vol. 22, no. 1, pp. 17–26, Jan. 1974.

15. T. Nakamura and D. M. Parks, “Determination of elastic T-stress along three-dimensional crack fronts

using an interaction integral”, International Journal of Solids and Structures, vol. 29, no. 13, pp. 1597–

1611, Jan. 1992.

57


